Steam Car Network
  • Home
  • About
    • Get Involved
    • Sponsors
  • Events
    • Upcoming Events
    • Past Events
  • Blog
  • Magazine
  • For Sale
  • Resources
    • Get And Give Help
    • Technical Articles
    • Steam Powered Cars
    • Links
  • Media
  • Contact
Picture
SPOTLIGHT

Steam Car Network
presents Steam Magazine. This magazine is a collection of articles written by steam automobile enthusiasts for your enjoyment


A MAGAZINE FOR
EVERYTHING
STEAM

EVENTS
|
MAGAZINE
|
CARS & PARTS FOR SALE
|
WANTED CARS & PARTS
|
GET HELP
|
TECHNICAL ARTICLES
|
BLOG

The Development of a Steam Powered Motorcycle

2/20/2020

 
Picture
 
                 The Development of a Steam Powered Motorcycle
​                                            PART ONE

The following article covers the basic design philosophy for an attempt at the land speed record for a steam powered motorcycle and perhaps the outright record for any steam powered vehicle.

As a starting place for a steam powered land speed record, a motorcycle is a terrible idea. The restricted space envelope and poor aero-dynamic characteristics make it the worst possible concept. However, not to be daunted that is what we chose. The decisive factor was  because we had this small Bower and Bell engine, which was an Abner Doble inspired design, it is too small for a car, but deserved to be used in something. Our love of motorbikes and the idea of a steam powered motorbike is more appealing to us than the ultimate record itself, we have used a Suzuki Hayabusa as the donor vehicle.

The basic formula pertaining to drag is: Drag = Cd x (1/2 x density of air x velocity2 x Area), where Cd is the co-efficient of drag and Area is the projected frontal area. As we can see, drag increases by the squared function of speed. The two most important factors that we can control in design space is frontal area and the Cd.

A motorbike has a relatively small frontal area, which is good,. However, even fully faired racing motorbikes struggle to achieve better than a Cd of 0.6. This compares to 0.3 for a modern road car, a Streamliner can have Cd as low as 0.12.​From the RSR Bonneville Aero-Horsepower & Drag Loss Calculator: available online at: - 
https://www.rbracing-rsr.com/aerohpcalc.html 

Coefficient of Drag: Street, faired motorcycles are notoriously inefficient aero-devices with Coefficient of Drag (Cd) figures in the 0.6 range. For example, a Suzuki Hayabusa has a Cd of .561 whereas a Kawasaki ZX-12 has a Cd of 0.603. Modern cars often have paid close attention to aerodynamics and may have Cd figures of 0.3. Streamliners may have Cd figures of under 0.2, perhaps as low as 0.15 or in some cases figures of 0.10 have been achieved.
 

Frontal Area: Reducing frontal area is key to going fast as the horsepower requirements go up exponentially as you push that "barn door" through the air. You'll need a close approximation of your vehicle's frontal area in square feet to make this calculator entry. A Suzuki Hayabusa has a frontal area of 6.01 square feet. A Kawasaki ZX-12 has a frontal area of 6.09 square feet. Some streamliners like the Lambky Vincent have only 4 square feet frontal area. 
​

Vehicle Weight: On shorter courses with asphalt surfaces and good traction weight is more of an issue than it is at Bonneville, where weight can aid traction on the slippery salt surface. Short courses are more of a drag race and accelerating extra mass is not a good idea. At Bonneville the big dogs will be on the long course with over six miles of salt with the clocks at the 2, 4, and 6-mile markers, so weight is not nearly as much of an issue.
Picture
Picture
                                 Figure 1: An example of a record setting Streamliner at Bonneville ​
Picture
                                      ​Figure 2: At Elvington airfield UK setting 80mph run
                                                             Basic Design.
The engine was chosen​ due to availability and suitability (mainly size). In some respects this is not an ideal engine for the task. However, it was suitable and most importantly available!
The engine in question is a
double acting Bower and Bell V twin, a modest 1.25 in diameter high pressure cylinder and 2.5-inch diameter Low pressure cylinder, the stroke is 1.5 inches with a fixed 50% cut-off. Various figures are bandied around for its power, approximately 30hp at 3000rpm with 1500psi has been quoted.
One owner from Scotland who carried out trials with a Dynamometer, has stated that he achieved 22hp at 840psi and a constant 1890rpm. Calculations carried out indicate correlation with the reported test results from Scotland. Interestingly using
the same calculator with the quoted 1500psi and 3000rpm​ show around 32Hp from the Hp cylinder only. Alternatively calculating for both cylinders (including subtracting the negative work from the HP cylinder on its exhaust stroke) shows ~29HP as a single acting engine, if allowing for double acting, then power is ~58Hp.  

We intend to push it as far as we can, using the spreadsheet I have created using 840psi, 1890rpm it predicts 20.8hp compared to the 22hp reported. At 3600 rpm, 2000psi and 900F, it predicts 94hp. I’m somewhat sceptical that the engine will produce this or indeed hold together.
However, that is what we intend to trial on the Dyno. As far as the spreadsheet goes, it is quite complex and is not a simple pro-rata affair. When data from other verified engines is entered, it predicts values commensurate with those reported. So, until proven otherwise,
we have to believe the numbers at this stage!  

The water and fuel usage are calculated at 743lb/hr of water and 8.96US-Gallon/hr of Kerosene at full power. The bike carries 53lb of water, enough for about 4 minutes running at full power. However, to go from a standing start to one mile only takes around 30 seconds, so this is ample for the purpose. Fuel has rather more in reserve, as fuel is consumed even when water isn’t, to maintain temperature and pressure, for example on the paddock stand before a run. 
​

In theory the engine should hold together, as it has been proven to be quite happy at 3600rpm. The small (0.75 inch) crank throw, means that piston velocity is no higher than other steam engines with longer throws and maximum torque is generated at low rpm.
​Therefore, if it doesn’t break at the start up, then there is no reason to believe it will fail at the high revs. However, since engine failure must be quite a credible possibility, the engine output shaft has been fitted with a bespoke free wheeling hub such that if the engine locks up, the rear wheel will remain free to rotate. See Figure 3 below
Picture
                          Figure 3:Sprag clutch freewheeling hub with water pump output shaft. 
A mechanical water pump is fitted to the end of the free-wheeling hub output shaft. This delivers all of the water necessary. The capacity of the water pump is approximately 200% of theoretical demand, ensuring the ability to rapidly increase the water level within the steam generator if steam temperature is too high.
​The water pump is driven by an eccentric, which can be changed to provide different water delivery, should testing reveal changes are required. Water must be added to the steam generator at start up by external means, as no electrical or hand pump is provided on the bike.
 

We have chosen to run the steam generator at between 900 and 950 Fahrenheit. The steam lubricating oil limit is 1000F. This increase in temperature results in reduced water consumption for a given power. Abner Doble typically used 850lb/hr at 850F as the requirement for a 100Hp engine. This aligns with the water consumption predicted by my spreadsheet. 
                                                         Steam Generator 
The steam generator has been designed to output sufficient steam for 96Hp, which is 750lb/hr at 950F. The basis for all fluid velocities and required surface area has been calculated from the work of Abner Doble, including the required combustion volume. The steam generator has ~430 feet of 8mm OD tube for the water coils, 180 feet of 12mm OD tube for the steaming coils, 30 feet of ½ OD tube for the Normaliser and 30 feet of ½ OD tube for the super heater. The water and steaming coils are carbon steel for improved heat transfer properties. This minimizes the required tubing and the ​​Normaliser and Superheater coils are 316L stainless steel to withstand the higher temperatures. The total weight of tubing is 120lbs and the internal volume is 0.3 cubic feet. If one considers that the required output of 727lb/hr equals 12lb/min and the internal volume is sufficient for ~9.5lb of water/steam, then simplistically the approximate time that a molecule of water entering at the inlet to the generator takes to subsequently exit the generator at 950F is (9.5/12) *60 = 47.5 seconds. At full power the velocity in the water tubes is 9ft/ sec, in the steaming coils 50ft/sec and in the superheater 75 ft/sec. Therefore, notionally the water spends 48 seconds in the water coils, 3.6 seconds in the steaming coils and 0.8 of a second in the superheater. 
​

This might seem incredibly fast. However, comparing to Abner Doble’s design for a 100Hp generator producing 850lb/hr of steam at 1000psi, (steam at this temperature and pressure has a density of ~1.39lb/cubic foot). 

Producing 850/3600 = 0.236lb/sec. 
​

The super heater and normaliser coils are 3/4inch OD, 9/16inch ID and 39 feet total length. The cross-sectional area is therefore 0.2485inch2. The volume in the superheater is (39*0.2485/144) = 0.0673feet3, so contains 1.39*0.0673 = 0.0936lbs of steam. Therefore, to produce 0.235lb per second, requires the superheater to be emptied 0.235/0.0936 = 2.5 times per second, 2.5 times 39 is 98 feet per second velocity!
Picture
                                           Figure 4: Steam generator casing ​
For the generator controls we have a temperature sensor (referred to as TC1) at the end of the steaming coils, a Normaliser inlet at the start of the Normaliser coils for adding water to the top coils, should steam temperature be excessive. This is sized to allow for approximately 10% of feed water, followed by a pressure sensor (P1) and second temperature sensor (TC2) at the outlet from the generator. This follows broadly other successful control systems for monotube steam generators
Picture
                                                         Figure 5: Schematic of plumbing ​
At the steam chest on the engine, a third temperature sensor (TC3) and second pressure sensor (P2) is located. This is important for the generator control system as will be described later. The regulator is a fly by wire control. A suitably rated regulating stem needle valve is located between the generator and the bike engine.
​ The twist grip throttle is in fact a potentiometer. This electrical signal is used via a controller to move a stepper motor, which actuates the valve. The controller is within a military spec case for protection and has its own Uninterruptable Power Supply (UPS).
This consists of a stack of Super Capacitors, which charge as soon as power is connected to the bike. Should input signal or external power be lost, the controller automatically runs a valve close procedure, using the stored electrical energy within the Super Caps.
The control and power cables to and from the stepper motor and control box, are run within an armoured sheath.
As a back up to the regulator, a second valve is positioned upstream and is actuated by a hydraulic cylinder from the clutch lever. This ensures that the rider can manually shut of steam to the engine. However, once used, this valve can only be reset after all pressure is drained from the generator.
The water pump has a pulsation damper fitted at the outlet and a relief valve set at 2300psi to protect the pump and damper.
Between the water inlet to the generator and the water pump, are two check valves. Closest to the pump is a poppet check valve with polymeric seal.
At the generator inlet is a metal seat lift check valve, rated for 3280psi at 900F. Immediately after the metal seat check valve is a relief valve set at 2500psi. Should the pressure exceed this within the generator, this will ensure the liquid content of the generator is immediately released, (albeit flashing of to steam in the process), therefore collapsing the pressure.
The lower set water water-pump relief ensures that the mechanical pump can’t deliver water should the generator pressure be high enough to lift the generator relief.

The main electrical power for the bike is provided by 3 in number 24v Lithium batteries each containing ~10Ahr. They can sustain a continuous discharge of 15 amps (each) with 70amps peak.
​At full load the fuel pump draws 8 amps, the air fan 20 amps, the control system 6 amps and the electrical boost pump (water suction delivery for mechanical pump) 3 amps. Total 37 amps. 
                                                                 Burner
The burner consists of a single flame tube containing an atomizing oil nozzle by DELAVAN. This is a Variflow nozzle that allows for modulation.                                     
Picture
                                                    Figure 6: Burner schematic 
This system allows for a minimum firing rate of just over 1gal/hr, up-to a maximum of 9.9gal/hr> This is achieved via three control modes. At constant pressure (100psi) the bypass line is controlled via pulse width modulation (PWM) of a solenoid controlled PRV.
This allows (with the nozzle we have selected) a firing range from 1.2 to 6 gal/hr. With the bypass line fully closed, fuel pressure can be increased (max 300psi) to give up-to 9.9gal/hr.
​ This is achieved through PWM control of the fuel pump motor. Air is supplied via an Electric Ducted fan intended for radio-controlled aircraft. Again, through PWM, the air supply can be matched to the fuel delivery to give the correct air fuel ratio.
          
Picture
                                                        Figure 7: 3 phase 24V EDF  ​
                                                   Control System 
It should be stated at this point, that what has been described to date reflects the current status of the design. An earlier version of both the generator and control system have been physically trialled, and speeds of around 80mph achieved.
This was very disappointing to ourselves, as we hoped to easily break the 100mph mark. However, subsequent investigations revealed that the generator was woefully under tubed, containing only enough tube for around 25hp, the burner could only deliver 3gal/hr.
The piston rings were broken on the valve gear due to standing for a long time, such that the engine was severely compromised.
​With a fixed cut-off engine, it is extremely important that the generator can provide as much steam as is demanded, without the ability to reduce cut-off there is no ability to reduce steam consumption if pressure and temperature are low, this creates a vicious circle when it comes to monotube steam generators. 

The control and protection philosophy are as follows. The normal operational envelope is controlled via a small computer, vis a raspberry Pi, controlling fuel, water and air. 
Picture
                                        Figure 8: Test bed for Raspberry Pi control system 
If the system strays outside of the normal operational envelope, there exists a hard-wired relay-based protection system. This utilises industrial process temperature and pressure controllers, which hold the power relays made.
Should protection limits be exceeded, power is removed from the relays, effectively shutting down the burner etc, regardless of what demand signals may be being sent by the control system. Should this hard-wired electrical system fail, then beyond this, we have physical mechanical pressure reliefs and an emergency steam shut of valve hydraulically operated via the clutch lever.
​ A thumb kill-switch and a kill-cord are also provided, which have the effect of removing all power (shutting fuel solenoids etc). As previously described the regulator will then automatically shut upon loss of signal or external power. 
Picture
                             Figure 9: Dummy combustion chamber to trial control system 
Demand for fuel is calculated from the steam chest conditions. i.e. temperature and pressure within the steam chest determine steam density and thus the heat content of the volume of steam used. Steam density is calculated in real time by the PLC using a five-order polynomial equation I developed from steam tables. It is sufficiently accurate across the permissible operating range of pressures and temperatures that we are using. Swept volume, inlet cut off and rpm are then used to calculate mass flow rate of steam. 
Picture
                          Figure 10: Formula for steam density used by PLC
Picture
Picture
 Figure 11​: Actual values for steam at 850F and 2000psi from
https://beta.spiraxsarco.com/resources-and-design-tools/steam-tables/superheated-steam-region#artical-top
​
Steam Mass flow rate = Swept volume x cut off x rpm x steam density. Since inlet flow conditions and the effectiveness of the piston and valve rings will affect the real value, a multiplying factor is utilised. This can only be determined for a given engine via experiment and we have assigned this the notation leakage factor.
From the pressure and temperature of the steam in the steam chest, the specific heat content can be calculated. Firstly, the saturated steam temperature is calculated using again a formula developed by ourselves,
Picture
                           Figure 12: Formula for calculating Saturated steam temperature 
Using this the specific heat content of the saturated steam was derived initially using formula developed from the IAPWS Industrial Formulation 1997. Page 10 of 14 ​
Picture
                          Figure 13: IAPWS Industrial Formulation 1997 for region 2. ​
However, we have found that suitably accurate results for our region of operation can be achieved through the use of the following formula developed by ourselves.
Picture
                     Figure 14: Formula for calculating specific heat of dry saturated steam 
Then the degrees of superheat above the saturation temperature are used to calculate the specific heat content due to superheat using a fourth equation developed. The sum of these values, is the total specific heat content of the steam being used by the engine. 
Picture
                    Figure 15: Formula for heat content due to superheat 
Picture
    Figure 16: Formula that calculates the heat content of steam within the steam chest 
So the formula calculates the heat content of steam at 850F and 2000psi as 2.64x106 + 5.508x105 which equals 3.191x106 J/kg or 1372 Btu/lb, this compares to 1371.84Btu/lb from the SpiraxSarco web site, an error of 0.16Btu/lb or 0.01%. The error increases to a maximum of around 1.5%, at 750F and 800psi. Provided temperature is maintained at above 800F the error across the conceivable pressure range in the steam chest is <1%, the error is largely associated with the Superheat term hence the correction factor.
The PLC using the above formulas calculates the specific heat content of the superheated steam several times a second. The previously calculated steam density and swept volume is used to calculate the amount of steam being removed.
Picture
​Then the heat removed from the generator is simply the mass flow rate x the heat content.
Picture
​The generator efficiency is estimated from the relationship between mass flow rate/ heating surface area, the generator has been sized to achieve ~80% efficiency at full power. Since we now have a value for heat removed in BTU/hr the fuel demand is simply calculated from:
Picture
approximations within this approach, will be such that equilibrium is unlikely to be exactly achieved, as such temperature and pressure will rise or fall during operation in proportion to the errors within the calculations.
There are various permutations. However, in simplistic terms (for the sake of this article) there are four basic scenarios, temperature to low or too high, and pressure too low or too high.
1. If temperature is low but pressure is good, then there is excess water in the generator, i.e. the water to saturated steam transition is too high up the coils. The remedy is to reduce feed water input.
2. If temperature is too high but pressure is good, then there is excessive heat and insufficient water. The remedy is to reduce burner input, and increase feed water (a normaliser can be used to control excess temperature. However, additional feed water must also be added at the bottom end to remedy the situation.)
3. If pressure is low but temperature is good, then again there is insufficient water in the coils. The remedy is to increase feed water and heat together.
4. If pressure is high but temperature is good, then there is too much water in the coils. However, both water and fuel must be reduced together.
 
Formula for temperature and pressure correction factors have been created. These are used to bias the fuel demand and water delivery. Therefore, the initial fuel and water demand, which was calculated from heat/ steam being removed, is either increased or reduced according to the conditions in the steam generator relative to the operating set point.

Clearly if either the boiler efficiency or the steam usage is significantly out, then the system will find equilibrium away from the desired set point. Therefore, trim pots are provided on the control interface to allow the boiler efficiency and or the leakage factor to be adjusted to bring the convergence in line with the operating point. An error in efficiency would result in issues related to heat input, errors in steam usage would result in issues with feed water rate.

If steam usage was underestimated, then we will see an increase in temperature with a falling pressure. This is because there is a reducing water level in the generator. Therefore, the leakage factor must be increased. Should pressure be high and temperature low, then steam usage is overestimated and leakage factor should be reduced. Note the reduction in calculated steam removal has the effect of reducing both feed water and heat input proportionately. Therefore, pressure should reduce. However, temperature will be maintained via the reduced water level within the coils despite the proportional reduction in heat input.

Should boiler efficiency be underestimated then we will see over temperature and over pressure. In this case boiler efficiency factor should be increased, this will reduce the fuel delivery. Should temperature and pressure be low, then boiler efficiency has been over estimated and the boiler efficiency factor should be reduced, thus increasing fuel delivery.
So leakage factor increases or decreases feed water and fuel in proportion
Boiler efficiency either increases or decreases burner input alone. ​

​There are three control modes:
Minimum Burn:
At its lowest fuel pressure setting and with the return line fully open, the burner delivers approx. 1.2gal/hr. In this setting the burner cuts in and out at the operational point for pressure and or temperature, the fan continues to run at low speed to prevent a damaging heat soak, which could otherwise occur. The system stays in minimum burn, whilst demand is less than the minimum burn value (1.2gal/hr). Speeds in excess of 30mph will be required before demand exceeds minimum burn.

PRV control:
Once demand for fuel exceeds minimum burn mode, the system automatically switches to PRV control. Now the system varies the PRV position in the nozzle return line to match fuel delivery to demand. As the demand increases, the PRV progressively closes. The return flow meter is used to calculate fuel delivery. However, as the PRV approaches fully closed, the low flow starts to make the flow meter readings unreliable. As such, an algorithm is used to calculate return flow from PRV position at the final stages of closure. Unlike in minimum burn mode, the system modulates around the desired operating point. As previously described the fuel demand and water is modified based on generator conditions. Therefore, if pressure exceeds the operating point, this results in a reduction in fuel and feed water. The reduction progressively increases the further from the operating point the system gets. If this results in reducing steam temperature, then the feed water will be cut back further still. If the steam temperature actually rises due to the reduced feed water, then feed water is increased. Should the control system fail to keep the pressure and or temperature within the upper operating band around the set point, the system will drop into minimum burn mode. Once conditions return to within the operating band, the burner will ramp back up to the required demand again. Should, however, even minimum burn mode not prevent further pressure and or temperature rise, then upon reaching the safety limit the burner and feed water will fully shut down.

Speed Control mode:
Once fuel demand exceeds PRV mode, the return line valve and PRV are fully shut. Now fuel delivery is varied by increasing fuel pump speed. This has the effect of increasing fuel pressure in the fuel rail. Fuel pressure can be varied from 100 – 300 psi and at 300psi this gives 9.9g/hr. Modulation (including shut down) is as described for PRV control mode.

Feed Water control
The water pump is driven from the output shaft of the engine via the free-wheeling hub Therefore, even when coasting, the water pump is driven via the back wheel. However, no feed water is available when stationary. The outlet from the feed water pump has a recirculation line back to the inlet port of the pump via a solenoid valve. When this valve is open, no water is delivered to the generator. It is a simple task for the PLC to modulate the solenoid valve to control the proportion of water delivered. In addition, an offtake from the pump delivery goes to a second solenoid valve and from thence to the normaliser. Should the stem outlet temperature be too high, then the normaliser solenoid valve opens and allows cold water to injected to the top coils of the generator. The feed water entering at the bottom has an increased pressure compared to the steam leaving the generator at the top, due to the pressure drop related to velocity within the generator. As such the pressure delta increases with demand and so the fixed orifice in the normaliser nozzle has been sized to deliver approximately 10% of the feed water rate for any given speed and demand. The normalizer nozzle should consist of an orifice followed by approximately 3 inches of shroud within the steam main. This shroud is heated by the superheated steam. The water spray entering the shroud (via the orifice) is heated and turned to wet steam within the shroud before it mixes with the main steam flow, ensuring good mixing and efficient heat transfer between the gaseous fluids. If water is merely injected straight into the super heater coil, then the water droplets bead like water dropped on a hot plate and the effectiveness of the system is much reduced, (remember at full demand the velocity in the superheater is >75ft/sec), with a mix of wet and superheated steam leaving the generator outlet. The water pump is fixed displacement, thus the feed water rate is calculated from engine rpm and validated by a flow meter within the suction line to the pump. A non-return valve on the pump inlet ensures that when in bypass mode, the internal pressure in the pump is largely maintained and not just lost back to the water tank. An electric boost pump ensures that pump inlet conditions are maintained to prevent cavitation.

Part two will follow after further updates to design and testing.

0 Comments

pat Farrell balancing a Stanley steam car engine

1/18/2020

 
Pat Farrell explaining how he balanced his 30 HP Stanley steam car engine. 
reprinted from SACA  FORUM.
Re: Balancing an old steam engine 
I added additional counterweights to our 30 HP Stanley engines' crankshafts. Before the added weights, the Stanley engines started bouncing at about 47 M.P.H. Just minutes ago, I just blew down our 1911 Stanley model 85 7 passenger 30 HP touring after a 25 mile demonstration ride. I was giving some of my classmates (class of 1963) a thrilling ride at 70 MPH and there wasn't a bit of bounce anywhere coming from the engine. Smooth as silk! The Stanley still had more throttle left to use. The 30 HP Stanley car is unbelievable! The added counter weights made it just that much better.
 The counterweights that I added to our 30 HP Stanley engine were almost the same size as the counterweights that the engine throws already had on it. I do not know their exact weight. The were crafted by REMPCO in Cadillac, Michigan by Gilbert "Red" Hall. Phone number 1-800-736-0108 If one has a 30 HP Stanley and he is not using these counterweights as of yet, then they have not experienced the true smoother higher speed potential of their Stanley. Our model 85 is geared 50 to 60. Almost one to one. The tires are 36" in over all diameter. At 70 MPH, the Stanley engine is smoothly just loafing along.
Our 1911 Stanley model 85 7 passenger, 30 HP is old technology that they already had by 1911 and about 50 years of research in it to make it the most advanced form of transportation of its time. By updating in the proper areas, like engine balancing, modern metals, better brake lining, safety glass, better tires, so on and so on, we presently have one of the most advance forms of steam transportation in this modern era. Our model 85 has never disappointed me in its performance or reliability. I drive with modern traffic. Its handling is on par with many modern vehicles. My only short comings are that about every 50 miles I have to look for water, and I have to be cautious with its two wheel brakes. 
My pride is that this Stanley is that it is all scratch built with scrounged up parts by me. I tried to make it historically accurate too. 
People who scratch build their modern steam cars are unfortunate in that they often are trying to re invent the wheel again by using previous failed inventions. If the modern steam car builders would comb the back issues of our Steam Car Bulletins, they could learn a lot from the failed past ideas used with steam cars. Oh yes. I have had a lot or reworked parts through the years too. Perfection eventually arrives. 
Picture
Image above is a conversion done in England by Basil Craske similar to Pats idea.
0 Comments

Rick Ashton Talks About The Ashton Valve Company

12/19/2019

 
​
  1.  How many of you have heard of the Ashton Valve Company?
  2. How many of you remember seeing an Ashton Gauge or Valve in the field?
  3. How many of you have experience with a boiler?


Two years ago I knew next to nothing about the Ashton Valve Company. I remember my father mentioning the name a few times over the years but he knew little about the company outside of a few family names and the fact that there was a building in Cambridge with “Ashton Valve “carved on it.
I was sitting with my mom and dad talking about my mom’s side of the family and what I had recently learned about them. My Dad said, “Why don’t you try and find some information on the Ashton side of the family?”. “Sure”, I replied. I immediately found Ashton Valve online. Most of the references were links to Ashton items that had sold on Ebay.
It wasn’t long before I had photographs of long deceased relatives that my Dad had never seen before. My scrapbooks soon filled with hundreds of old advertisements and articles I had downloaded from turn of the century steam trade journals. The book shelves at my house started to fill with old gauges and other artifacts related to Ashton Valve purchased on Ebay. One of my friends who happens to be a steam enthusiast suggested I visit the annual “Steam Up” at the New England Wireless and Steam Museum in Rhode Island. I contacted the people running the museum and they loved my idea of having an Ashton Valve exhibit at the event. I honestly had my doubts that anyone would care about a largely forgotten company. I was wrong. Quite a few people asked me questions about the company and told their stories about working with steam. I had purchased a CD online of old Ashton Valve catalogs and the man who sold it to me surprised me by showing up at the show and giving me a safety valve from 1874, and a stock certificated dated 1877.
That day in Rhode Island was very inspirational to me. Not long after that, the same friend who told me about the “Steam Up” mentioned a museum he had visited some years back that had sponsored a steam show he thought was excellent, and suggested I check out the museum sometime. It was the Charles River Museum of Industry and Innovation. A few emails and a couple of visits later and here I am, talking about Ashton Valve and looking forward to the exhibit that will be here sometime this year.
Picture
I’ll be talking about a company that lasted over 100 years, a company that started with 4 employees and a vision to try and make boilers safer. At their peak, they employed around 300 people and were known worldwide for their quality products used in locomotives, ships, and power houses. I would also like to think their products saved a few lives along the way, because boilers can be like bombs.
Ashton Valves was born out of Henry Ashton’s desire to make boiler rooms a safer place to work. In the mid to late 1800’s people were dying at an alarming rate. In one year in the mid 1860’s more than 1,000 people died due to boiler explosions and even more were injured. In April of 1865 the paddle steamer “Sultana”, carrying Union prisoners back North from Confederate prison camps exploded, resulting in the loss of 1500 lives. Another explosion in July of 1894 at a lumber mill caused the death of 4 workers and did substantial damage to the mill. It was a horizontal tube type boiler and when the explosion occurred the pressure was probably about 500 psi. The boiler head was blown out and the rest of the shell left the boiler room and flew through the air for a distance of over 1200 feet. During it’s flight it passed through the mill and over several houses at a height of about 80 feet. The last 350 feet of it’s flight was through a dense and heavy woods where it cut off everything in it’s path including a tree which was 28 inches in diameter. The insurance company stated “the safety valve did not work.” It obviously wasn’t an Ashton Valve!
Picture
In May of 1894 many people living in the town of West Bay City were terrified by the explosion of a boiler in the local planning mill. Buildings in the area were badly shaken up and the sidewalks of buildings nearby were littered with the glass from broken windows. The mill itself was wrecked and the boiler blown into 4 pieces. The engineer was blown against a sewing machine, cutting his lungs and heart out. Brick was thrown for a quarter of a mile. The late engineer was known to have a habit of running boilers with low water, claiming it was more efficient. In the years between 1885 and 1895, there were an average of 200 boiler explosions a year. Between 1895 and 1905, there were 3216 boiler explosions in the United States, and average of one a day, resulting in 7600 deaths and countless injuries. As recently as 2017, a man in Revere Mass died while tinkering with a faulty boiler. The explosion blew out the basement windows and a door clean off the hinges. There is an old quote “Necessity is the Mother of Invention”. The time was ripe for a major improvement.
Time to introduce Henry Ashton. Henry was born in Norfolk, England in 1846. His basic schooling was supplemented by a course in mechanical and steam engineering. He arrived in Boston in 1869 with his wife Emma and a 2 year old son Alfred. He found work at the Hinckley Locomotive Works on Albany Street. He invented the lock up pop safety relief valve for steam engines in 1871 while working as the superintendent of refilling at the Eagle Sugar Refinery in Cambridge. He opened up shop at 138 Pearl Street with 3 other employees under the name Ashton’s Lock Safety Valve Co. He was burned out by the Great Boston Fire of 1872. 67 acres of what is now known as the business district was destroyed with the loss of 767 buildings. Wooden buildings, high winds, and a shortage of horses to pull firefighting equipment all contributed to the destruction.
1873 finds the company at 9 Rowes Wharf by the waterfront. In 1874 they moved to 261 Purchase St where they stayed for 4 years.
The Cathedral File in 1878 burned the company out from their location at 93 Federal Street. Finally in 1879 they were able to attain some stability when the company moved to 271 Franklin St. They were at that location for 27 years. Another fire hit them in 1892, but the damage was minimal. The building was 4 floors to handle a business that had been growing rapidly since the introduction of the pop safety valve. In 1900, a fifth floor was added to keep up with the demand. They were always busy. In 1885, the Railway Purchasing Agent trade journal quoted the company as stating:” Ashton Valve has not discharged a man on account of any falling off in orders, nor run less than 10 hours a day during the last 4 years. The works are now running overtime in some departments”.
1892 was an important year for the company as they purchased the plant, patents, materials, and business of the Boston Steam Gage Company. As their trade journal release stated: “The reputation gained by nearly 20 years’ experience in the manufacture of safety valves and the widely recognized quality of the products of the Ashton Valve Company will be the only guarantee needed for the unsurpassed quality of the goods we shall put upon the market”.
I find it surprising that it took them 21 years to get into the manufacture of gauges as they are the perfect complement to the other products they produced. And it wouldn’t be long before Ashton Gauges were as well known to the industry as the safety valves. History has shown that the gauges are what Ashton Valve is best known for today. at least on Ebay, where they can sell for substantial amounts of money. There was one listed a couple of months ago for $1700 dollars. They are works of art and quite popular with collectors and steam punk enthusiasts.
1895 was notable for the death of Henry Ashton, the company’s founder. Most of his responsibilities would be taken over by his son Albert, who had attended MIT, and would be an important figure in the daily operations of the company for the next 27 years. In the years between 1895 and 1922 the company produced 440,828 pressure gauges, the peak years being between 1915 and 1920.
Picture
Trade shows, exhibitions, and conventions have always been an important part of any sales organization. They are essential opportunities to acquire new accounts, enjoy old customers, and check out the competition. These shows, as well as the many advertisements in trade journals, and the salesmen and distributors the company had all over the world kept the profile of the company high. The reputation of an Ashton valve or gauge as a long lasting top quality product was always heavily advertised. An ad in a 1921 trade journal read “Ashton products, unequaled for quality, efficiency, and durability, higher in first cost but cheapest in the end”. This was a time when you repaired things, you didn’t throw them away. The company had a full service gage repair service.
A few of the shows the company attended are worth mentioning for the awards they returned home with. At a Boston show in 1874 the Mass Charitable Mechanics Association awarded them a silver medal for their pop safety valves. The Mass Charitable Mechanics Association was founded in 1795 with Paul Revere as its first president. It’s founding members first met to address the problem of runaway apprentices but soon evolved into a group committed to promoting the mechanical arts and raising money for member’s widows and families. It still exists today.  Is anyone here involved with this group?
Ashton Valves received a special premium award at the 1881 Cincinnati Industrial Exposition. In Chicago, they received another medal for pop safety valves at the 1893 World’s Fair. They crossed the Atlantic Ocean in 1900 for the Paris Exposition, bringing home 1 silver and 2 bronze medals. In 1904, at the St. Louis World’s Fair they received another silver medal for their display of safety valves and gauges.
The late 1800’s were times of active growth in labor unions nationwide. Both the American Federation of Labor and the Boston Central Labor Union were gaining strength. After a walkout in 1895, Ashton Valve restored wages that had been reduced the previous year.
In May of 1901, 53 machinists walked out of the Ashton Valve Company as part of a nationwide strike for shorter hours with no reduction in pay. In June the local strikers committee accepted the Ashton Valve proposal of a 9 hours day with no cut in wages. The workers of the time were working 6 ten hour days per week. In 1912 the Boston Molder’s Union #468 went on strike which resulted in a minimum wage of $3.50 per day!
The Franklin St building they had occupied for 27 years couldn’t handle the business anymore and in 1907 they purchased land in Cambridge and built a 4 story 45,820 square foot building. Located at 161 First St, the building still stands today with the Ashton Valve name clearly visible on the granite lintel above the front entrance The Cambridge Historical Commission has some wonderful old newspaper articles on the building. It was built at a cost of $67,000. It was one of the first modern factories built in what now is the Kendall Square area of Cambridge. Built on reclaimed swamp land, the facility featured modern bathrooms and electricity throughout the entire building. The 4 floors included a fireproof store room for paper drawings, iron shop, foundry, and a special testing room in the back with it’s own boiler capable of creating steam up to 400 psi. It was obviously designed with the idea that a better environment would provide a more productive work force. In 1919, Albert Ashton introduced a course in modern production methods. The object of the course was to train the men in the principles of foreman-ship, to develop their qualities of leadership, and to give them a broader view of industry as a whole. Mr. Ashton, the president of the company, who is the originator and organizer of this movement, thought that course would help develop the men who took it as well as benefit the plant through increased efficiency created by better cooperation. He was also of the opinion employee relations would be strengthened because of the more careful handling of problems by the trained foreman. This was quite a contract to the Captain Bligh mentality used by many foreman and supervisors back then and even today.
The business was still growing. The 1920’s and 1930’s were the peak years of the company’s influence. Their profit for the year 1916 was $182,234 or a little over 4 million in 2018 dollars. The year 1919 showed a profit of $214,178 or around 3.6 million in today’s dollars. Both numbers are pre-tax dollars. By 1922 there were around 250 employees.  Ashton Valve had satellite offices in New York City, Chicago, London, San Francisco, Mexico City, Philadelphia, St. Louis, Cleveland, Genoa, Vienna, and Paris.
The company helped form the Kendall Square Manufacturers Association and the Cambridge Industrial Association, which later became the Cambridge Chamber of Commerce. They were instrumental in starting a baseball and bowling league with other companies in the East Cambridge area.
1922 also saw the death of Albert Ashton, Henry’s son. He had been managing the company since Henry’s death in 1895. His brother Harry, who was the sales manager at the time, took over some of his administrative responsibilities. Business slowed in the 1940’s. Diesel locomotives, gas fuelled automobiles, and electricity as the main source of power all contributed to the decline in sales. According to the 1957 book “Atomic Power – It’s Significance to the Management of a Relief Valve”, “The Ashton Valve was a prime factor in the steam locomotive or railroad business, enjoying it’s best years in the late 1920’s and early 1930’s. 
Picture
It’s contribution to the overall sales is one of diminishing proportions, another example to be anticipated when a company does not assume a responsible role in the design development and manufacture of competitive products for an ever-changing market.” Unfortunately for Ashton Valve, the company never ventured far from the production of their steam related products.
Ashton Valve merged with the Crosby Steam and Gage Company in 1948, sold the building to Nicholson & Co., an industrial adhesive manufacturer, and moved with Crosby into the old Winter Brothers Tap and Die building in Wrentham, MA. The Wrentham building was torn down in 2012, Crosby was purchased by Tyco and still operates out of a facility in Mansfield, MA.
​ https://www.smokstak.com/forum/attachment.php?attachmentid=338041&d=1561734973
Rick Ashton
1 Comment

final chapter of service manual and maintenance log 1909 stanley model r

12/1/2019

 
                                                              Engine Block 
Unscrew elbows from the engine block and remove copper covering. It will expose oil soaked insulation which needs scraping off.
I made a lifting hook mounted on the back to assist in moving the engine.
                                                                  Valve Cover
The valve cover has a hole in it for the drip valve. The pipe used to help take the unit out of the car can be used as a fulcrum to wrench the cover off. It should be so oil soaked that it should screw off easily after you get it loose. One of the ears is missing which led me to modify a pipe to use against the remaining ear. It worked fine. When reassembling, the cover has packing in the top and needs removed and replaced with a strip of 1/8” packing. The cover was replaced with a new one Don Hoke had in stock in 2019.
​The valve surface should be smooth and not curved. Steam pushes the valve against the block and creates a seal.
                                                                      Gearbox 

The oil level in the gearbox should be about 1 1/2 “ from the bottom while in the car.
Bearings and sliding/turning surfaces should have minimal of .001-.003" clearance. It is easy to over-tighten bolts, and looser is preferred over too tight, especially with cam and crank rods. Make copper shims to space everything appropriately.
                                                                   Crank gear 
The crank gear is significant as it has a larger gear welded on top of a smaller gear. This was a fairly common practice as road conditions improved over the years allowing higher speeds and welding an existing gear over the original one was a low cost option to replacing the entire crankshaft. 
Picture
                                                                 Rear Axle
Differential
Removing the rear wheel requires a special puller that fits in the hub. The complete axle with wheels weighs 394lbs.
The main item to keep in mind is that play between the planetary gear and the spider needs to be as close to 0.001" as possible with less being more desirable than more. In the case of this car, there was so much play that the gears barely connected, resulting in catastrophic failure of all three spider gears as well as damage to the case.
Adjustments to this play is achieved primarily through shims between the planetary gear and the inner bearing but also through shimming the cross members so that the case still fits over the assembly.
The picture on the left shows a bit of the shims. on the right side, the housing is assembled over the differential, still allowing the axle to pivot.
​​
                                                                        Axles
Moving the planetary gears in ended up causing the axle to shift inwards on the rear end and the clearance between the wheel and rear-end disappeared causing the wheel to lock up on the driver's side and rub on the passenger side. In 2018, I disassembled the rear end again. Jim Wright built up the steel and I machined the end up a quarter inch further out. The Wheel is a press-fit with the nut torqued to around 200 ft/lbs on the 5deg cone splitting the 1 1/4" and 1 3/8" section. The end result is that the wheel fits better but there is no longer space for a washer under the nut on the end of the axle ,and in the case of one of the axles, a 1/16" cotter-pin hole needed to be drilled at the end of the shaft.
​The end result pushed the wheel out about 1/4" inch. The collar was turned and polished to accept the new oil seal from McMaster: 5154T29 (SKF 17231) for shaft 1.750" and bore 2.250". The collar is put on the axle with some gasket material. One axle has a middle diameter of 1.325" whereas the other is wider at 1.360". I did not change it. The outer bearing is a sealed unit and should not need any care.
​Before and After (2018)
                                                         Oil Pump Adjustment

Picture
The shortest the secondary piston and metering rod can be is to a point where it gets right past the opening. This will also provide the most oil to the cylinder​.
Picture
​The absolute longest would be a point where it almost reaches the intake port. Very little oil will be pumped with this setting. 
Picture
The rod is adjusted by moving the nuts in or out and then tightening them against each other.
Picture
To set the limit of the primary piston, place the metering rod towards the end of the hole, push in the primary piston until the two meet and mark the spot with a marker.
Picture
Picture
​Once back in the car, screw the piston into the mount until the most forward motion reaches the mark.

Brass Cleaning 
As There is a lot of Brass/ Copper on this car, polishing it will take a fair bit of time.
Polishing very tarnished Brass/Copper is best done with a soft cloth polishing machine and red rouge for a rough clean. White rouge on a finishing cloth seems to leave a build-up and the finish does not improve.
The likeliness for a Polishing machines to grab and throw parts to the ground at great velocity is directly proportional to their fragility and replacement cost.
Polish 
The best way I have found to clean by hand is through the Wizards product line. A buddy introduced me to Wizards Metal Polish, which is an impregnated piece of cotton. It worked well but not nearly as well as when I added Wizards Metal Renew to it.
Other products tried were :
Mothers Billet Cleaner (Good)
Brasso (Poor)
Most products sold at flea markets and products like Oxy-clean have found their way into the trash bin.
Saving the shine 
As of 2019, I have not found a suitable product that works.
I stayed with Wizards Metal sealant as it came in a package with the other Wizards Products. It seems to help a little. Eastwood has a product in a spray can that almost looks like a clear coat. Neither really kept the Brass from turning yellow and the Eastwood product required the buffing wheel to remove it.

                                                                            Paint
By the end of 2018 the paint started coming off sections of the car in sheets. On other parts like the hood and the front, there was a lot of burn damage. For a short time, I considered stripping the car down completely and have it repainted professionally, but veered away from that as the vehicle is getting a lot of use and the time it would take to do so would probably turn into a full restoration: as well as the slim chance of a fine pint job remaining that way for any length of time lead me to search for an alternative Gloss paint that would be durable. I eventually settled on Sherwin Williams Industrial Enamel. My Neighbour Arthur helped with prep and paint of the large flat section, as I did not want brush marks. The hood is a combination of prep styles as well as some brushing and some spraying.
The paint on the side was in very poor shape, and was not sticking to the wood at all. The passenger side seemed to be less affected by it.
​Early attempts included trials with and without primer as well as brushing VS spraying. Arthur was of great help here.

Eventually, we settled on a sand-able primer and spraying the enamel after making sure the primer was smooth. The gloss is not nearly what I would expect from automotive paint but I will try wet sanding it next winter. It takes a long time to dry.
​The dark blue stripe with the 1/8" light blue stripe within was achieved by putting a 1/8" piece of masking tape and paint the dark blue over it. I found that this paint came out very well if the masking tape was removed immediately after painting, as it allowed the paint to flow. Multiple coats of enamel tend to cause it to crinkle, probably since it takes so long for this paint to dry.
                                                                     Resources
Steam Oil: Siphon-a-min 1000     Brennan oil 970-247-3054
Machining of complex parts:  Rempco 231-775-0108
Boiler repair: Don Bourdon (802) 457-3787
​Tank Sealer: CHEMSEAL B2 TANK SEALANT CS3204
Brass:    Wizards 3004.2982 11011 Metal Polish.
            Wizards Metal Renew_Silver Polish, Aluminum Car Care, Motorcycle Copper Cleaner.
            Wizards 11021 Power Seal Metal Sealant.
                                                                    Steam Tables
Picture
Herb de la Porte
0 Comments

SERVICE MANUAL AND MAINTENANCE LOG 1909 STANLEY STEAM CAR MODEL R PART three

10/22/2019

 
                                                                Fuel Filters
​
​I installed 2 fuel filters/water separators in 2017 after noticing how much filth got into the system. I feel the pumps, Fuel automatic, Check valve and steam automatic will be well served with clean fuel. In addition to that, the 55gallon drum holding the Jet-A seemed to not get rid of water after rain, so I had some worries there. Parker industries introduced the RACOR SNAPP 2 micron water diesel fuel separator. It is a one piece unit of which the insert is easily replaced. Water settles in a transparent bowl and is easily drained. The valve is the main shutoff at the fuel tank. Fuel was unable to pass through anymore.
​For the Hexane system, I installed a RACOR 110A 10 micron fuel filter. It can be pressurized and it was plumbed in with copper tubing. It should perform to 35 psi


Picture
Update 8-17: the main fuel system has performed extremely well. For some reason, I have been draining a lot of water from the main fuel system and the filter will likely need replaced already. I don’t think it was as crucial for the pilot fuel
                                                            Steam automatic
​JRG means it originally came from Goulds. When assembling the bottom part, the system will bottom out when about three threads are showing. The assembly will be less than half a turn past where it needs to be. There is not a lot off travel and there is a lot of tension on the spring
Picture
                                                          Exhaust System.. 
The initial system had big gaps from where the engine pushed it out before the engine steam intake was shortened. Welded the system closed to where the steam discharge pipe came in. I’m puzzled with the pipe. It is simply soldered together and seems to hold fine
                                                             Tailpipe. 

I had soldered the tailpipe in the past/ it did not hold so I ended up welding it (TIG with High Silicon Brass rod from mcmaster)
                                                              Pilot Light. 
Bottom unit was a Propane setup. I converted it back to Hexane. Pilot body by Don Bourdon
Picture
Picture
Built a new needle from 1/8 steel rod using lathe grinder. Threaded it to standard #6 and threaded the casting accordingly. It needs to stick out past the seat as it guides gasses into the casting. It is easily bent on removal
Picture
                                                Sight glass (Gauge glass). 
An extremely useful study source is the klinger product catalogue at http://www.klinger.kfc.at/index.php/en/component/jdownloads/send/3-product-catalogues/19-product-catalogue-gauge-glasses
The unit on the steamer is as size 1B reflex gauge and can be found at mc master at https://www.mcmaster.com/#gauge-glass/=1cljafz

              The following came from Pat Ferrell in Washington state after a facebook inquiry:
​

I do use the McMaster reflex gauge gaskets, as they are a good value and they fit well. I use an antisieze on my gauge's bolt threads and I torque them starting from the center bolts like torquing a car's head gasket. Tighten a little at a time. I torque them when the gauge is cold, and then I re-torque them after the gauge has been fired and has cooled down again. I re-torque them every spring as an annual service. How many pounds? I torque them firmly, as I don't use a torque wrench, I don't want to guess the torque. In the 33 years of steaming, I have never had the quality of a reflex gauge glass degrade from use. Through the years I have lost about 3 gauge glass gaskets while on the road. I always carry spares with me.
Picture
 
​
                                                 Burner (Baker Style. Made by Blazik)
Remove and install: the burner will not come out with the car at its normal level. Lift the body and install two pieces of 2x4 to keep it up. A long enough piece of plywood held up in two spots will help finesse the thing out of the car but is indispensable to tweak it back in
Disconnect the steering bar to give more room
Picture
                                                        Burner make-up. 
The burner sits in an insulated pan. The easiest way to take the burner assembly out of the pan and put it back in is by doing it upside down. The gas diffuser is simple but the pipes are above the pan. If the pilot goes out and raw kerosene is blown in, there is no way for it to leave other than by burning it off.
I used muffler repair dope to seal the halves together and furnace cement to seal up everything else
Use masking tape to cover the slits and protect them from cement. Use insulation between pilot and burner
“Imperial hi-temp stove and furnace cement, Grey” seems easy to work with
Everything is screwed together with #10 button heads
Picture
Picture
Picture
Picture
                                                                 Hubcap. 
  lost a hubcap in Iowa, decided to make a new one from ultra machinable brass from mc master
Picture
Picture
Picture
                                                                Headlights. 
 
 made headlights operational with a small Acetylene tank and regulator from Trico
Picture
Picture
0 Comments

SERVICE MANUAL AND MAINTENANCE LOG 1909 STANLEY STEAM CAR MODEL R PART FOUR

10/1/2019

 
                                                         Brakes (Front).
​
 
Front brakes are Tokico A1 2-pod systems. They were used on a number of Kawasaki and suzuki 500 models in the 90’s. Seals are skf 22441 (3.25”X2.25”)
Picture
Picture
Picture
                                                          Brakes (rear). 
The outside brake is for parking and emergencies. As you pull the handle, it will get tighter and you may have to stop completely before it releases. The wheel can be removed with everything in place but you will need a wheel puller. Adjustment is done through the large yellow screw in the back (Pic Below) and the adjustment barrel is standard tread so to tighten, you have to push the ears up on the driver-side and down on the passenger side. A grease seal was installed in 2018 to try and keep oil off the Brake shoes
Picture
Picture
Picture
                                                                   Tires. 
Contrary to what I thought, Tire and Tube repair on this car is not likely something that can easily be done on the side of the road
Picture
In August 2017, I ran over a screw with the front wheel. It was on the last day of the Vermont tour and the tire did not go flat until the next morning. After eighteen years of use, the tire had very little tread left so it was time for replacement anyway. Once Home, I removed the tire but was unable to get the new one on. The design calls for the inside part of the tire to be seated on the edge of the rim before the valve can go in. there is very little clearance between the tire and the three-piece rim so putting the tire on at an angle, allowing the tube stem to go in, is out. Eventually, Dave Vaughn put the tire back on the rim but in the process, ripped the new innertube. Also, between Dave and especially myself manhandling the tire and the rim, we did a lot of damage to the paint on the wheel. As the inner- tube needed to come out again, it was a good opportunity to rethink tire management
basics
Tire size: 36X4
Pressure: 60PSI min
Vendor: Universal Tire
Wheel: all with steel three-piece Rim
 
Tire replacement consists of some major steps
  • Outer rim removal, repair, prep and re installation
  • Removal of the tire
  • Putting a new tire on the rim (without inner tube)
  • Placing the inner tube
                                                             Tire removal 
I have found it easier to keep the wheel on the car for this
Remove the valve stem
Mount the clamps on the tire and push the outside of the tire in enough to allow the outer rim to come off.
Picture
Remove the set screw on the rim lever and loosen the nut
As gently as possible, remove the outer rim. If the tires have been on the car for a long time, “gently” will include a prybar and the rim will get distorted
If the tire has been on the car a long time and has dried out, it may be possible to evenly slide it of the rim. If that is the case, push the valve into the rim before removing the tire.
Next, see if you can move the tire off by hand. Even when using the clamps, try to remove them every so often and use your hands. This is an extremely tedious process that will see no more that around 1/16” progress per revolution.
place your clamps to push the tire off the rim and start pushing the tire off the rim
                                                                    Outer Rim.
Picture
Picture
The rim is a Three-piece design. Loosening the little screw and tilting the lever outwards allows the rim to come off… in theory. In the model R, the wheels had not been touched since the car was built and the rim was rusted stuck in the groove. It took a substantial amount of effort to get it out and the rim elongated
Picture
After cleaning the outer rim and the channel in the main rim, I marked bent-up areas and built a jig for the press to help get it back in shape. It takes only small amounts of travel to get the rim to bend and requires frequent fitting
 
 
 
 
.


 I ended up drilling and tapping two holes in the rim (10-24 hardened bolts) (5/32 drill and 10-24 tap) and connecting two L-brackets and subsequently pulling the parts together with a ¼ threaded rod (Use a thick nut) after liberally coating the groove with never-seize
Picture
Picture
                                                      Mounting the tire.
DO NOT INSERT THE INNER TUBE
Slide the tire over the rim as far as possible. Use the tire-me-bob and a mallet to pound the inside on the rim past the first lip. You can then put the outer tire on and pound the entire blessed thing in. use the clamps to help. Progress will be tedious and, unfortunately, you will chip paint Continue until the tire covers the valve hole
Picture
Picture
Picture
At this point, install the rim. You can leave the pulling mechanism on it. Inflate the tire with a rubber-tipped air chuck until it seats on the interior part of the rim.
As the outer rim is lubed well, you may be able to work it out with a large screwdriver, pushing the tire in enough in the process without distorting the rim
Put reverse rolled duct tape in the groove where the rim fits through so that no air can escape
Blow up the tire with the airchuck until the outside tire pops off
Place the inner tube as outlined in the next section
                                                 Inner tube replacement. 
Remove rim as described earlier. DO NOT REMOVE THE ENTIRE TIRE if you can avoid to do so
Clean, reshape and refit the outer rim
If you’re only replacing the inner tube or if the tire is stuck, take the valve from the tube and use an air gun to blow up the inner tube and allow it to push the outside of the tire off the rim. Even if the inner tube has a very large hole in it, this will work
Picture
Picture
​Place the 1 1/4” dowels between the rim and the tire. Push out the valve stem. It is a rubber stem and is a press-fit. Remove the inner-tube, working around the dowels.
If you are only replacing the inner tube, don’t remove the rest of the tire
Use baby powder
Once the tube is in place, again inflate it to allow the tire to fit back over the outer rim, then pop it over the inner lip with screw-able wood vises as shown. Use of a hammer and dowel will help getting the area in between the wood vises to comply. There is extremely little wiggle room once the tire is on. Push the tire in far enough in so the outer rim will go back on. Replace the outer rim and gently blow the inner-tube to set the tire on the rim. Replace the valve and blow the tube to at least 60PSI
Keep a little air in the tube while pounding the tire back on the rim to avoid getting it pinched between the tire and the rim
                                                                    Roof. 
After return from Maine in 2017, we noticed the front bow had snapped in two. On inspection, the wood appeared to be quite brittle but I felt a suitable repair repair would be to drill a ½” hole in both ends and insert a ½” tube into the holes, putting it together that way. It should be structurally sound and undetectable as it’s covered up well
Picture
Picture
Picture
                                                                   Engine removal
Picture
 The easiest way to remove the engine is to do so with the rear axles attached. Remove the drip valve from the engine, screw in a ½” npt pipe around 6” long. the one in the box has a solid insert for added strength.  It will support the engine on a floor jack
Place the lifting strap under the body but on top of the exhaust pipe. Connect to the hoists and remove all slack
I took the springs off with the axles this time as they had sagged and needed removed. If this is needed again, I would likely leave them on the car
Remove brake lines, pump rod, exhaust and the steam line at the coupler
Remove pitch pole nuts. They are mounted on a threaded rod and one of them did not go back on well
Place the rolling floor jack under the pipe you threaded in and keep the handle under the differential lift until a slack is removed
Unbolt engine from front strap and pull strap of the engine
Lift the body until there is a gap between the spring and the axle and roll out the entire assembly                      
                                                                   Reinstall
Reassembly is easier if you put the wheels on lock jacks to help manipulate the assembly
Picture
Picture
0 Comments

SERVICE MANUAL AND MAINTENANCE LOG 1909 STANLEY STEAM CAR MODEL R PART TWO

9/18/2019

 
-                                                         Maintenance log. 

                   This is the maintenance log I have kept since I acquired the car.


2013. 

We bought the vehicle from Phil Lewis in August 2013. This was my first exposure to steam and most of the year was spent just on learning. Met Robert Wilhelm, Mr Marshall and his steam museum in Maryland and towards the end of the year, while in Maine, I met the Stanley Steam team at the Museum there. I did not steam the car up for the first time until the end of the year.
Installed replacement Burner Phil had acquired through Allen Blazik.
Mapped plumbing.
Converted Propane pilot back to hexane.
Tried to fix leaky valves.

2014. 
2014 was generally spent learning how to fix valves and pumps. I experimented alot with different packing material.
Replaced packing in water pumps.
Replaced Packing in fuel pumps.
General cleaning and polishing. Many local rides.
2015. 
Machined water pumps for balls to run at 1/32” clearance. Replaced with Delrin Balls (7/16”). Replaced Packing again.
Disassembled Oil system, cleaned and fixed oil tank where a screw was put through it, disassembled oil pump and reassembled to different specs.
Disassembled oil pump again due to intermittent lack of pumping oil. Removed a check-ball that did not show on the drawings, it did not fit and was probably added in error.
As the result of an oil leak, found damaged gears in the differential spider. The drive train completely removed and disassembled. Broken parts sent off to Gilbert Hall at Rempco in Cadillac. Rear suspension sent to Detroit Spring to fix sagging. Finished the Canadagua Tour this year, which was our first Steamcar tour with no real issues.

2016. 
Repaired plugged fuel line.
Reassembled engine with some newly built bearings (Rempco). Reused valves and repacked guides.
Reassembled rear end, refitted axles and clearances in repaired housing (Jim Wright) and powder coated parts (Creative Powder-coating).
Repaired water  tank. 
Had multiple issues during Maine tour. Pilot kept going out. Squeaking in the pumps and fuel delivery failure eventually forced us to trailer it back on the very last day.
Replaced pilot casting with new one from Bourdon and built a new needle from 1/8 steel rod using lathe grinder. Threaded it to standard #6 and threaded the casting accordingly.
Main fuel valve at the tank was completely plugged up.
Much squeaking in the pump assembly resulted in repacking with more high pressure packing from Mc-master.
Iowa Tour brought more issues with pilot and leaking main throttle. We finished the tour with poor fuel delivery issues (plugged valve).
-Participated in two tours: Kingfield Maine put on by the Stanley Museum and Prairie du Chien in Iowa. Neither were free of problems but the car performed well
2017. 
Removed burner, disassembled burner. Cleaned and reassembled with new bolts and nuts. Disassembled the main fuel vaporizer completely and flushed the system. Replaced into the burner assembly with hardened bolts.
Removed and disassembled throttle. Straightened shaft, machined cone, reassembled and tested. Seated with minimal leakage. Shaft moved freely after repair.
Replaced the assembly from the boiler to the throttle with a single medium thickness black pipe,  connected with a Swagelok part number SS-8-RSE-6 elbow.
Got ¼ pipe and elbows as well as “Key Graphite Paste” from Mc-Master to start sealing piping.
Extended the whistle valve and redid that assembly.
Re-seated both valves for the sight glass and re-seated the blowdown valve into the exhaust
The smoke hood had started to crack at a point where it did not match the boiler hold-down bar. The bar was re-positioned and the top TIG welded.
Removed the fuel automatic and disassembled the bottom part. Repacked shaft and reassembled.
The entire assembly was filled with water and tested to 750 PSI. Steam automatic restricts at 550 psi and closes completely at 600. Checked for leaks.
Because of ongoing poor performance on the water pumps, I decided to replace the packing in the water pumps with #247 John crane packing from vintage steam products. The check valve cap broke and I remade one.
Took apart fuel automatic. Remade nylon valve. Fished extra bearing from pipe that had occluded the system. Re-seated check valve and cleaned the system out. Reassembled and set for 130 psi.
Don Bourdon is building a new boiler. Picked up 8-17 and put in storage.
Removed old electric box for propane equipment. Ran electrical wire for brake lights to wicker basket. Replaced brake lights with LEDs.
Installed water separator for both main and pilot systems.
Plumbed acetylene tubing to the lights from the running board and hooked them up.
Made a new hub cap.
Exhaust leaks. Sealed up leaks in the exhaust system. Welded the front part and screwed the rear end together to get rid of all the gaps.
Rebuilt the tailpipe by welding it rather than soldering it.
Rebuilt the front brakes (Well, Mike from Kennedy’s did as he found the parts) turned the rotors down .020 which made the units fit better.
Repacked the front wheels and replaced the seals.
Removed water tank and had it fixed by Thomas radiator. It was still leaking a tiny bit after last year’s repair.
Replaced some of the covering on the smoke hood.
Late 2017: Replaced front tire right side (left from front).
Made bigger bolt hole and tighter treads in front right kingpin (left seen from front). Put in 5/16 soft bolt, kept upper hardened bolt in place.
-Participated in Vermont tour with no issues other than running over a screw on the last mile of the last day, causing a flat tire.
​2018. 
Replaced rear tires, a job I hope never to have to do again.
Fixed front roof bow which had somehow broken.
Removed water reservoir as it was leaking again and brought it to Thomas Radiator to see if they could fix it.
Fuel starvation again due to main fuel valve plugged up. Cleaned and reinstalled.
Replaced water separator as it had gotten so dirty you could no longer see the bowl.
Tightened all bolts holding pump housing to the car.
Repacked water-pumps again and found pump-shafts to be concave, likely leading to premature failure. REMPCO machined new ones from hardened material. They need oiled after each use to keep from rusting
- Participated in Pennsylvania tour, hosted by the Auburn Heights and Mr Marshal as well as the Washington, Missouri tour put on by Dick Friedeman and Joe Graziano. Both were trouble-free.
2019. 
The Water reservoir started leaking again. Top and one of the sides was removed. Copper was thoroughly cleaned, and bottom was welded back together with poor results. The rest was soldered back together, and aircraft tank sealer was used to waterproof the seams the top was then soldered on again
The steam siphon system was repaired as described extensively in that section.
Rear axle shafts were re-machined to allow more wheel clearance.
Oil seal system fabricated on the outer axles to keep oil out of the brakes as described in that section.
Steam box cover replaced with new one from Hokes.
Driver side rear perch pole nut repaired.
A lot of the worst paint damage was taken down to the wood, re primed and repainted with Sherman-Williams industrial enamel. The flat section on the driver side was painted with an airless system.
The throttle was removed and rebuilt by Gil at Rempco in Cadillac. The smoke hood was remounted and the holes were refilled with refractory cement.
The kingpin in the Passenger front wheel was tapped and fitted with a hardened bolt, similar to the driver side. The wedge in the lower part remained.
The Fuel filter was replaced.
Replaced the hinges on the windshield with reproduction Brass-era model-T hinges.
Fabricated a new end to the siphon hose out of brass and copper parts.
Eric sewed a patch on the driver side shroud as the material had worn through and the rod started coming out.
Learned to pinstripe and did quite a bit of that.

                                                            Repair Guide. 

Water pump check valve bolt.
Check ball clearance 1/32”. Adjust by machining excess off lip.
Raw material: 3/4 “hex rod from McMaster.
Picture
Water reservoir removal and repairs. 
​The tank is made from copper sheeting soldered together into a shape that fits under the seat. The seat top is removed with wood screws under the base. The water return line has to be removed in pieces and requires some creativity as shown below. The siphon hose and the water feed also have to be removed before the reservoir can be removed
Picture
Picture
​
The water tank has been seeping since I've had the car but it had gotten worse in 2017. I had tried to fix it at that time but it leaked again in 2018. I removed it again and Thomas radiator went at it, but by the fall it was leaking again. I removed the worst side, cleaned it and attempted to weld the bottom with extremely poor results. I ended up soldering the thing back together and sealing the seams with "CHEMSEAL B2 TANK SEALANT CS3204", which is extensively used in aircraft pressurized cabins and fuel cells.
Instructions for use: https://www.youtube.com/watch?v=bbNqw_qqCPI
The top edges were cleaned and the top soldered back on.
Function of holes and tubes in the tank clockwise starting with the small hole towards the top center: sight glass. steam powered siphon, overflow, main water feed.

Picture
Fuel Automatic. 
A simple device, just make sure the ball bearing does not fall into the body and plug the passage. I was surprised with how much dirt got into it, likely leading to its extremely poor performance.
Picture
Picture
Picture
Picture
​The black plastic part is MDS infused nylon, turned to fit snugly in the hole. The diaphragm should seat flush on its base and the nylon valve should just touch the seat.
Important: the one-way valve bearing ahead of the assembly will easily travel down the pipe and block the entry to the assembly. If the ball shows up missing during reassembly, that’s likely what happened.
Pressure setting is extremely simple. Pump the handle. If you reach past 140 psi with a steady stroke, loosen the spring tensioner. If it does not build up enough, tighten it.
 Throttle. 
​The throttle works pretty ingeniously. Steel shaft, steel barrel and brass seat held on through a press fit with tiny roll pins.
Has to be removed for disassembly and hole has to be realigned with exit hole for it  to work.
Picture
Picture
​The 2019 rebuilt throttle with the original slide.
The slide was also made a little shorter and the steam feed pipe a little longer to allow for better clearance. The three divots have to line up with the out port.
Picture
0 Comments

Service Manual and Maintenance Log 1909 Stanley Model R

8/8/2019

 
                                           
                                            1909 Stanley Steamer Model R
                                               Service Manual and Maintenance Log
                                       WRITTEN AND PRODUCED BY  Herb de la Porte
                                                                  Part One
Picture
​




​ 
History: This car is a re-creation by Basil Craske from England that started with an Alan Kelso project body. Basil Craske Bought the body in Ireland in 1999 and recreated the car around it in time for it to be shipped to Australia in the early 2000’s for their inaugural steam car tour. Sold it after a number of tours to Phil Lewis of Cleveland in 2006 while on a steam car tour in the Ohio area (Berlin). In 2013 Phil Lewis sold the car to me along with a new Baker style Burner delivered by Allan Blazik
Picture
​By the time I got the car, Phil had taken it on a number of tours and it had not ran very well for a while. He was well into his 80’s and crawling all over the vehicle became impossible.
The brass had not been polished since 2006, the burner had warped and cracked due to serious undetected back fires and everything else performed very much sub-par. ​ 

 
The Contents of this part of the story are as below 
Basic Operation. 
Water System.. 
Oiling System..
Oil Pump Operation.
Check Valves in the water system.
Blow-down and Siphoning into boiler after cool-down. 
Steam powered Siphon. 

                                 Basic Operation
                                                   Water System ​
Picture
Picture
                                  



The Water system takes water from the reservoir under the seat and pumps it into the boiler.
Water quantity is adjusted by two valves. The one on the steering column is the on-off switch for everything. Closing the one under the seat under the seat (highest Valve) adds the second pump to the mix
Picture
​When the wheels are turning and the boiler is pressurized, one-way valve (H) is closed with up to 600 psi of pressure. When both valves (D E) are open, water meets resistance at (H) and flows back into the reservoir. When you close valve (E) on the steering wheel, water from the front pump, unable to pass through (G), builds up enough pressure to overcome the boiler pressure and flows through (H) into the boiler. the rear pump still flows freely back to the reservoir. If you also close Valve (D) water from the rear pump will no longer be able to go back to the reservoir and is forced through the one-way valves into the boiler as well
The manual handle has the option to add water to the boiler by opening valve (F) under the floorboard and closing the other valves. When doing so, you’ll suck water through the main pumps one-way valves and push it through the system that way. The volume amounts to no more than a couple of ounces per stroke. Since there is a sizeable amount of pressure to overcome when the valve is open, for routine operation it is advisable to close the valve while the pump handle is as far forward as possible or you won’t be able to manually pump fuel.
​The manual handle has the option to add water to the boiler by opening valve (F) under the floorboard and closing the other valves. When doing so, you’ll suck water through the main pumps one-way valves and push it through the system that way. The volume amounts to no more than a couple of ounces per stroke. Since there is a sizeable amount of pressure to overcome when the valve is open, for routine operation it is advisable to close the valve while the pump handle is as far forward as possible or you won’t be able to manually pump fuel.
​
​                                                     Oiling System
The Oiling system is a brilliant design in simplicity. There are no check valves and the gauge is a disk pressed against a window by a spring but the system requires some care in setting up
Picture
The oil used is a 1000W mixed with animal fat. It has to be formulated for the higher pressures a steamcar runs versus a locomotive or steam tractor. Condensing cars are even worse as they need an oil that can be removed from the feedwater before it hits the boiler again
When oil gets in the boiler, it coats the insides, creating an insulating barrier and requiring more heat and, therefore, more damage. Condensing boilers tend to have a shorter life span then non-condensing boilers
I have been using Green Velvet products from Bill Petitjean. Bill’s oil is very dark and seems to stick to everything. The best way to dispense it seem to be through a laundry detergent bottle with a big spout. In 2018, bill sold the green velvet line to Brennan oil in Durango, CO 970-247-3054
​
Picture
Picture
                                                Oil Pump Operation 
An ingenious device. It is adjustable to give a metered quantity of oil with every stroke the concept is simple. There are two pistons in the pump. The one on the right is connected to the drivetrain and the one on the left is held in place by a spring
 
Picture
Picture
​When the driven piston is the way out, oil can only come in through the inlet
Picture
As the piston moves in past the inlet hole, the reamining oil has no easy outlet and starts moving the left piston
Picture
​Once the left piston gets to the outlet hole, the oil escapes
Picture
​​Until the entire metered amount is gone. When adjusting the piston, it is important the driven piston cannot go further than this position as it would try to press oil in a closed container
Picture
​As the driven piston is pulled out, the secondary piston stops at the preset area 
Picture
​The vacuum created at this point helps fill the reservoir up again for the next stroke
 
The actual pump and metering rod looks like this:
Picture
​Adjustment details are in another section
                                        Check Valves in the water system
Picture
​There are a number of check valves with two in each of the main pumps, one between the pumps and one at the boiler
The ball is held in the assembly by a special screw that allows the ball to travel about 1/32”
The balls in the pumps as well as the check valve below the floorboard are 7/16” Delrin. The one in the check-valve at the boiler is stainless steel
Delrin is preferred as steel would eventually hammer out the seats. Obviously that material cannot be used In valve (H) as the heat would destroy it
Since the balls deal with pressures in excess of 600 psi, replacing the delrin ones annually is probably prudent. The boiler valve should not be touched until it leaks, which is characterized by steam pushing into the reservoir

Picture
​Steel ball bearings rust and damage the valves
Picture
Leak in (H) valve                                                                                            ​
         Blow-down and Siphoning into boiler after cool-down
​ 
Blow-down, other than a great piece of entertainment or annoyance, depending on the neighborhood, is crucial to get sediment out of the boiler. Each corner of the boiler is connected to a valve on the front of the car.
Try to blow down as soon as possible and at as high a pressure as possible after every run to avoid stuff to settle. The purpose is to get as much crap out of that boiler as possible. Make sure the pilot is out and no fuel can go to the boiler before blowing down. This is an extremely loud event. Wear Ear protection and turn off the hearing aids
The water in the boiler at 600 PSI is roughly 500 degrees Fahrenheit. When you let it escape, it will turn to steam instantly forming a characteristic tulip shape at the nozzle. Open all four valves three full turns. Let the steam escape until the steam shape turns from a “Tulip” to a straight flow. Close the valves as quickly as possible. You should still have around 400 PSI remaining which will allow you to park the car.

Picture
The steam coming from the nozzles will be cool enough within a few feet that you should be able to hold your hand in it for a short time. It’s a great way to see how filthy the water in the boiler gets

Picture

Before the boiler cools down, Make sure the throttle is completely closed, fill the water reservoir and open the water valve on the steering column. As soon as the boiler cools below boiling temperature the remaining steam will condense and the boiler will become a vacuum chamber. Opening the return valve may help give water a little less friction on the way to the boiler.

Storing the boiler full of water limits corrosion and extends its life
                                                Steam powered Siphon
​The Stanley has a steam powered system to suck water from below the level of the vehicle and pump it into the reservoir. The system works by sending a jet of steam through a ventury and creating the vacuum needed below it to suck up water. Once cold water hits the nozzle, the pressure of the steam will still shoot it upwards, keeping the vacuum below going and most of the heat will be absorbed by the water on the way up the tube
I am spending a bit more time on it here because these principles also apply to the way fuel and air are mixed in front of the burner
Picture
​The simplest way to explain the principle is that the steam velocity from the tapered pipe on the left creates a vacuum right around it. In order to get the ultimate in suction, however, the nozzle and tube around it (ventury) sizes are relevant to each other. if the ventury is too big, air will be allowed to leak back out. The basic suction system in the model R is to the left. It was screwed into the tank where it ended into a 3/8" ID tube leading to the top but the nozzle was placed in a 2" section of  5/8" diameter tube. It never worked well so i made a test rig to see how much it could be improved upon by turning piece of 5/8" plastic, notching it at 1/4" intervals and increasing hole sizes during the tests  

Picture
Picture
​The results surprised me in how little it took to get major changes
Picture
​lessons learned: 1/64" diameter makes a difference. The "Sweet spot" appears to be for the restriction of the insert to start about 1/2" above the nozzle
another test piece at (A) 1 1/8" with a 11/32" diameter able to be screwed into the tank showed that there was a marked improvement in Suction
Picture
No insert: 3"HG
Picture

​with insert: 10" HG

​since Mercury is about 13.5X heavier then Water, a conservative estimate would be that every inch of vacuum should equate to about a foot from the bottom of the tank.
0 Comments

The re-creation of a 1915 stanley mountain wagon

7/8/2019

 
                                      Roel Rasker recreates a 1915 Stanley Mountain Wagon.
                                                                PART ONE
After the restoration of my Stanley EX in 2017​, I was looking for a new project.
The choice soon fell on a mountain wagon. These cars have always had my interest, since my first meeting with Peter Williams's mountain car at the Dorset Steam fair a few years ago.
 
First I started looking for an original mountain car. Because these were not available, or too expensive, I decided to build one myself. My preference was initially for a 1909 model with a wooden chassis with 3 benches.
To be able to drive the car in the Netherlands, however, I had to work with an existing old Stanley chassis. Otherwise it was not possible to get it road legal in the Netherlands
.
That's why I decided to go for a 1915 model on a 735 chassis. It was important that I could find an old chassis whose restoration to the original model was not possible.
In England on steamcarnetwork website I found a 735d chassis with chassis number. This was a great start to a big new project.

Picture
I could also buy a 20 HP engine in England. With this I already had a solid foundation. In the future I might replace this engine for a 30 hp engine but first I want to see if the engine is strong enough.
 
I had set aside 2 years for this project. But by working full time on it, I succeeded in half a year.
I did a size study on the basis of photos of a 1915 MW, which in my opinion was quite original, after which I made a dummy body with a bench in plywood.
Picture
Picture
​ 
These sizes were pretty good and with some minor adjustments I started producing the MW. Because this is a reproduction I naturally had some freedom to build the car the way I want. Among other things, more space between headboard and first seat, exchangeable seats, and a fixed propane gas tank for the pilot light. I also preferred copper gas lamps instead of electric lamps. The floor is completely flat so that the car can also be used as a pickup
Picture
 The convertible top is made of curved ash arches. The rest of the frame is made from various existing  parts. An upholsterer has covered the convertible top and also provided the leather upholstery of the four seats.
I had the bonnet and the fenders made at Vintage Wings in England. The fenders were perfect.
I still had a lot of work on the hood. The company could not make the louvres. That is why I made a steel mold and punch with which I could apply the louvres manually.
Roel
0 Comments

CONTINUING THE RE-CREATION OF A 1915 STANLEY MOUNTAIN WAGON

6/8/2019

 
                                            PART TWO  
After spraying I applied the pin strips with a Buegler pin striper.
The MW has a 30 HP boiler which is made by the Goolds. This boiler produces enough steam for this car
Picture
The pump pit is placed in the same place as with the 735. For the steam oil I use a Madisson Kipp lubricator.
Picture
To transport the MW, I bought a closed box trailer that fits the car exactly.
Picture
In order to be able to get on the road legally with the MW, it was inspected by the national road traffic department.
This is always an exciting moment because you never know the outcome of the research because it is a special project. But still we managed to inspect the car within a day.
Picture
​ 
I have now driven the first kilometers. I had made the connecting rod of the water pump too light. This broke off almost immediately. I am also still looking for the right adjustments from the burner.  I am listening to every strange sound I hear while driving. And there are a lot of them. After every trip I get more used to the car. The boiler maintains good pressure and the fuel system also functions properly. After every ride I come across small things that are easy to solve.
 
Building this car was a nice adventure. I have met nice people and learned a lot.
The MW will be shown for the first time during the Melle steam event 2019
Roel
Picture
0 Comments
<< Older Posts
Newer Posts >>
    Picture

    Archives

    January 2021
    November 2020
    October 2020
    July 2020
    June 2020
    May 2020
    April 2020
    February 2020
    January 2020
    December 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    October 2017
    August 2017
    June 2017
    May 2017

    Categories

    All
    Series 1 - Issue 1
    Series 1 - Issue 2
    Series 1 - Issue 3
    Series 2 Issue 1
    Series 2 Issue 2

    RSS Feed

Home
About
Blog
​Events
Classifieds
Resources
​Contact
Steam Car Network functions as a resource for all steam car and steam bike enthusiasts. The website is constantly updated with articles, events, and informative posts to keep the community alive and growing. Feel free to contact us if you have any questions or concerns at the email address below and we will promptly reply. 

​team@steamcarnetwork.com
Picture
  • Home
  • About
    • Get Involved
    • Sponsors
  • Events
    • Upcoming Events
    • Past Events
  • Blog
  • Magazine
  • For Sale
  • Resources
    • Get And Give Help
    • Technical Articles
    • Steam Powered Cars
    • Links
  • Media
  • Contact